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The time evolution of wavepackets in crystals in the presence of a homogeneous electric field is formulated
in k space in a numerically tractable form. The dynamics is governed by separate equations for the motion of
the wave form in k space and for the evolution of the underlying Bloch-type states. A one-dimensional
tight-binding model is studied numerically and both Bloch oscillations and Zener tunneling are observed. The
long-lived Bloch oscillations of the wavepacket center under weak fields are accompanied by oscillations in its
spatial spread. These are analyzed in terms of a k-space expression for the spread having contributions from
both the quantum metric and the Berry connection of the Bloch states. We find that when sizable spread
oscillations do occur, they are mostly due to the latter term.
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I. INTRODUCTION

The study of the dynamics of electron wavepackets in
crystals has experienced a revival in recent years. The devel-
opment of heterostructure superlattices, photonic crystals,
and optical lattices has opened new possibilities for the ex-
perimental realization of fundamental dynamical effects such
as Bloch oscillations1–5 and Zener tunneling.6–8 The wave-
packet picture of transport has also shed light on subtle trans-
port phenomena in solids. For instance, the intrinsic anoma-
lous Hall effect in ferromagnets was shown to result from a
Berry-curvature term in the wavepacket group velocity.9

Numerical simulations provide valuable insights into the
dynamics of wavepackets in crystals. For instance, Bouchard
and Luban10 carried out a detailed study on a one-
dimensional biased lattice, finding a rich variety of dynami-
cal phenomena �Bloch oscillations of the center of mass,
coherent breathing modes, Zener tunneling, and intrawell os-
cillations� as a function of the field-free band structure, field
strength, and the form of the initial wavepacket. In order to
solve numerically the time-dependent Schrödinger equation,
they employed a supercell geometry with hard-wall bound-
ary conditions; care had to be taken to ensure that the wave-
packet never came close to the hard-wall boundaries for the
duration of the simulation. In situations where unbounded
acceleration �via Zener tunneling� of a significant portion of
the wavepacket takes place, a large supercell must then be
used, which may become computationally demanding. In
principle that can be avoided by switching from hard-wall to
periodic boundary conditions. However, the inclusion in the
Hamiltonian of the nonperiodic electric-field term eE ·r then
becomes problematic. A successful numerical strategy for
describing homogeneous electric fields under periodic
boundary conditions was developed in Refs. 11 and 12 for
static fields and generalized to time-dependent fields in Ref.
13.

In Refs. 11–13 the goal was to solve for the electronic
structure of insulators in the presence of a homogeneous
field. In this work we use a similar strategy to describe wave-
packet dynamics. Our starting point is to express the wave-
packet as a linear superposition of Bloch states,

��� = �
0

2�/a

dkfk��k� = �
0

2�/a

dkeikxfk�vk� �1�

�for simplicity we shall work in one dimension�, and to fol-
low the time evolution of both the wave form fk and the
underlying states �vk�. If a wavepacket—initially prepared in
a given band—is constrained to remain in the same band at
later times, one obtains the “semiclassical” approximation,
which becomes exact in the adiabatic limit. Instead, we will
allow for a fully unconstrained time evolution. As a result,
for t�0 the states ��k� may become an admixture �ncnk��nk

�0��
of several eigenstates of the crystal Hamiltonian H0. We shall
refer to such nonadiabatic states as Bloch-type, since they
retain the Bloch form, with vk�x+a�=vk�x�.

Equation �1� is closely related to the crystal-momentum
representation �CMR� of ���.14,15 In the CMR the wave-
packet is expressed in terms of the field-free Bloch eigen-
states, with expansion coefficients fkcnk. Instead, the expan-
sion �1� is in terms of the field-polarized states ��k�, whose
time evolution must then be determined alongside that of fk.
Compared to the CMR approach, we have replaced having to
solve for the complete set of eigenstates ��nk

�0�� with having to
solve for a single state ��k� at each k and every time step.

The paper is organized as follows. The equations of mo-
tion for fk and �vk� and the expressions for the center and
spread of the packet in terms of them are derived in Secs. II
and III, respectively. In Sec. IV we perform simulations for a
one-dimensional tight-binding Hamiltonian, using a numeri-
cally tractable form—given in the Appendix—of those equa-
tions.

II. DYNAMICAL EQUATIONS IN k SPACE

The wavepacket evolves according to the Schrödinger
equation �e=�=1�,

i
d���
dt

= �H0 + Ex���� , �2�

where E is the electric field, which can be time-dependent
but must be spatially uniform. Since fk and �vk� enter Eq. �1�
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as a product, they are individually defined only up to a mul-
tiplicative factor which—because �vk �vk�=1—must take the
form ei�k. We fix this phase arbitrariness by choosing fk to be
real and positive.

Inserting Eq. �1� into Eq. �2�,

i� dkeikx�fk�v̇k� + ḟ k�vk��

=� dkeikxHk
0fk�vk� + E� dkeikxxfk�vk� , �3�

where Hk
0=e−ikxH0eikx and henceforth the integration range

from 0 to 2� /a will be implied. Rewriting

E� dk�− i�ke
ikx�fk�vk� = E� dkeikxi��vk��kfk + fk��kvk��

�4�

��k�� /�k and an integration by parts was performed� then
yields, at each k,

ifk�v̇k� + i ḟ k�vk� = Hk
0fk�vk� + iE��vk��kfk + fk��kvk�� . �5�

Contracting with �vk� and subtracting from the resulting
equation its complex conjugate, we arrive at the equation of
motion for fk,

ḟ k = E�kfk, �6�

where the reality of fk was used, together with the relations
�v̇k �vk�=−�vk � v̇k� and ��kvk �vk�=−�vk ��kvk�. To find the
equation of motion for �vk� we plug Eq. �6� back into Eq. �5�,

i�v̇k� = �Hk
0 + iE�k��vk� . �7�

Equations �6� and �7� govern the coherent wavepacket
dynamics. Equation �7� was previously obtained in Ref. 13,
where it was shown to describe the dynamics of valence
electrons in insulators under the homogeneous field E�t�.
Here it describes the nonadiabatic evolution of the Bloch-
type states �vk� supporting the wavepacket.

As for Eq. �6�, it determines the k-space dynamics of the
wave form. In particular, it leads15 to the familiar expression
�k�t= �k�0−Et for the time evolution of the k-space center of
the packet; a result which remains valid in the presence of
interband mixing �Ref. 16, Appendix E�. It is easily seen that
the dynamical equation for fk

2 is the same as that for fk,
namely, dfk

2 /dt=E�kfk
2. In this form Eq. �6� was derived in

Ref. 15, working in the CMR.17 Finally, we note that in spite
of being reminiscent of the collisionless Boltzmann
equation,15,16 the meaning of Eq. �6� is quite distinct: while
the Boltzmann equation deals with the time evolution of the
distribution of carriers in phase space, Eq. �6� deals with the
coherent time evolution of a single carrier �wavepacket� hav-
ing a finite extent in k space.

For numerical implementation, the k derivatives must be
replaced by finite-difference expressions over a k-point
mesh. While such discretization is straightforward for Eq.
�6�, Eq. �7� requires some care. As in Ref. 13, we replace it
with

i�v̇k�� = �Hk
0 + iE�̃k��vk�� , �8�

where ��̃kvk���Qk��kvk�� �Qk=1− �vk��vk�=1− Pk�. Unlike
��kvk�, ��̃kvk�� lends itself to a numerically robust finite-
differences representation �see the Appendix�.

The states �vk�� obeying Eq. �8� differ from the states �vk�
in Eq. �7� by a phase factor,

�vk�� = ei�k�vk� = Uk�vk� , �9�

which we must keep track of. Inserting Eq. �9� into Eq. �8�
and using Eq. �7� yields

iU̇k = − EAkUk, �10�

where Ak is the Berry connection,

Ak = i�vk��kvk� . �11�

Equations �6�, �8�, and �10� are the desired dynamical
equations for fk, �vk��, and Uk. Together they determine the
time evolution of the wavepacket,

��� =� dk fke
ikxUk

��vk�� . �12�

In practice Eqs. �8� and �11� are replaced by the discretized
forms �A3� and �A6�, respectively.

III. WAVEPACKET CENTER AND SPREAD

In Sec. II we formulated the dynamics of the wavepacket
�1� in terms of fk and �vk�. Here we shall express its center
and spread in terms of those same k-space quantities.

A. k-space expressions

Let us define the generating function for the spatial distri-
bution of the wavepacket,

C�q� = ���e−iqx��� =
2�

a
� dk fkfk+q�vk�vk+q� , �13�

where the second equality follows from Eq. �1� together with
the identity,

��k1
�e−iqx��k2

� =
2�

a
	�k2 − k1 − q��vk1

�vk1+q� . �14�

The first moment is given by

�x� = i�qC�q��q=0 = �iDk� = �Ak� , �15�

where iDk is the Hermitian operator,

iDk = i�k + Ak, �16�

and we have introduced the notation

�Ok� �
2�

a
� dkfkOkfk. �17�

The last equality in Eq. �15� follows from fk being real.
Next we evaluate the spread,
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�
x�2 = �x2� − �x�2. �18�

For �x�2 we use Eq. �15�, while �x2� is given by i2�q
2C�q� �q=0,

�x2� =
2�

a
	� dk��kfk�2 +� dk fk

2��kvk��kvk�
 . �19�

Inserting 1= Pk+Qk in the last term on the right-hand side
�RHS� and then combining with Eq. �15� yields

�
x�2 =
2�

a
� dk��kfk�2 + �Gk� + ��
Ak�2� , �20�

where Gk is the quantum metric,18

Gk = ��̃kvk��̃kvk� . �21�

All three terms in Eq. �20� are manifestly non-negative.
The first one only depends on fk, while the remaining two
also depend on the states �vk�. However, the second term is
insensitive to the phases of those states �it is invariant under
the gauge transformation �A9��, whereas the third term is
phase dependent.

It is instructive to consider the limit of a uniform wave
form fk=a /2�, in which ��� becomes a Wannier function.
Equation �15� can then be recast as �x�=a� /2�, where �
=
dk Ak is the Berry phase associated with the manifold of
states �vk�.19 The first term on the RHS of Eq. �20� then
vanishes identically, while the second and third terms reduce
to the gauge-invariant and gauge-dependent parts of the
Wannier spread for an isolated band in one dimension, given,
respectively, by Eqs. �C12� and �C17� of Ref. 18.

B. Uncertainty relation and minimal wavepackets

An alternative decomposition of the wavepacket spread
may be obtained by noting that

��iDk�2� =
2�

a
� dk��kfk�2 + �Ak

2� , �22�

as can be readily verified using the hermiticity of iDk and the
reality of fk. Comparison with Eqs. �15� and �20� shows that

�
x�2 = ��
�iDk��2� + �Gk� . �23�

Combining this with the relation

�
A�2�
B�2 �
1

4
���A,B���2 �24�

yields, upon setting A= iDk, B=k, and using �iDk ,k�= i,

��
x�2 − �Gk���
k�2 �
1

4
. �25�

In the limit of a vanishing lattice potential Gk→0 and k
→p �canonical momentum�. Equation �25� then reduces the
familiar Heisenberg uncertainty relation.

Let us now show that Eq. �25� becomes an equality for
minimal wavepackets in one dimension. Once the manifold
of states �vk� and the width 
k of the wave form are speci-
fied, all that remains is to set the phases of the �vk� and the
shape of fk. We wish to minimize the spread �20� with re-

spect to those two parameters. We start with the phases,
which only affect the term ��
Ak�2�. This term vanishes
when Ak is constant,20 in which case

�
x�2 − �Gk� =
2�

a
� dk��kfk�2. �26�

Combining the previous two equations,

2�

a
� dk��kfk�2 �

1

4�
k�2 . �27�

It can be verified that for 
k�2� /a this becomes an equal-
ity when the wave form has a Gaussian shape. In conclusion,
a minimal wavepacket in one dimension is characterized by a
Gaussian-shaped fk and a constant Berry connection Ak in
the region of k space where fk is non-negligible. Its spread
equals

�
x�min
2 =

1

4�
k�2 + �Gk� . �28�

It was shown in Ref. 18 that the spread of a maximally
localized Wannier function in one dimension is �
x�min

2

= �Gk�. This result can be viewed as the limit 
k→
 of Eq.
�28�. In the opposite limit of a narrow wave form, the wave-
packet spread becomes dominated by the term 1 /4�
k�2, as
will be illustrated in Sec. IV B.

IV. NUMERICAL RESULTS

A. Tight-binding model

We have applied our scheme to the same one-dimensional
tight-binding model used in Ref. 13. This is a three-band
Hamiltonian with three atoms per unit cell of length a=1 and
one orbital per atom,

H0 = �
j

�� jcj
†cj + ��cj

†cj+1 + cj+1
† cj�� , �29�

with the site energy given by �3m+l=U cos �l. Here m is the
cell index, l= �−1,0 ,1� is the site index, and �l=2�l /3. The
upper panel of Fig. 1 shows the energy dispersion for
�=−U=1.

Before the spatial distribution of the wavepacket can be
defined, the matrix elements of the position operator must be
specified. As in Ref. 13 we choose the simplest diagonal
representation x=� jxjcj

†cj, with xj = j /3. The lower panel of
Fig. 1 shows the quantum metric calculated for the Bloch
states in the lowest band. As expected from the relation21

Gk�1 /2Eg
�k� �Eg

�k� is the direct gap to the second band�, Gk
peaks around k=0.

We will now study numerically the wavepacket dynamics
on this model. In Secs. IV B and IV C we consider, respec-
tively, Bloch oscillations in a weak field and Zener tunneling
in a strong field. In both cases we gradually turn on the field
over a time interval T, as E�t�=E0 sin��t /2T�, and keep it
constant after. The simulations begin with a minimal wave-
packet prepared in the lowest band. Unless otherwise noted,
the width of the Gaussian wave form is 
k=0.075�2�.
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B. Bloch oscillations in a weak electric field

In order to observe long-lived Bloch oscillations we
choose a weak field E0=0.055�Eg

�0� /a, which we turn on
over a time interval of the order of the Bloch oscillation
period �B=2� /E0a �henceforth in this section, we choose
t=0 long after the field has saturated at E0�. 100 k points are
used to sample the Brillouin zone and the time step is 
t
=1.7�10−5�B.

In the upper panel of Fig. 2 the weights ��j ����2 of the
wavepacket on the tight-binding orbitals �j� are used to de-
pict its spatial distribution as a function of time. The Bloch
oscillations of �x� are clearly seen. In the lower panel we plot
the oscillation amplitude A versus the width W of the lowest
band, which was tuned by adjusting the tight-binding param-

eters in the range 0.5���1.5 and −1.5�U�−0.5. A and W
are linearly related, with a slope A /W�8.5. This is in agree-
ment with the prediction A= �1 /2��W /E0��S0� valid for a
single-band tight-binding model.10 The dimensionless pa-
rameter S0 depends on the initial choice of wavepacket, but
its magnitude cannot exceed unity; in the present case
1 /2E0�9.09, so that �S0��0.9.

Next we analyze the behavior of the wavepacket spread in
the course of the Bloch oscillations, by tracking each of the
three terms in Eq. �20�. According to Eq. �6�, as the center
�k� of the packet traverses the Brillouin zone, the shape of
the wave form fk remains unchanged. Hence the term
�2� /a�
dk��kfk�2 is a constant of motion. Oscillations in the
spread must therefore arise from the other two terms �G� and
��
A�2� �henceforth the k subscript will be omitted for brev-
ity�.

Since initially the wavepacket was minimal ���
A�2�=0�,
one might have expected spread oscillations to arise mostly
from the k-space dispersion of the metric, i.e., from the vary-
ing constraint imposed by the uncertainty relation �25� as the
wavepacket moves through k space. Instead we find that after
an initial transient the spread of the packet can become far

from minimal, with ��
A�2�� �G� �the bars denote a time
average over several Bloch oscillations�. This is the situation
depicted in the upper panel of Fig. 3, which pertains to the
same simulation run as in the upper panel of Fig. 2. Note that
the spread undergoes sizable oscillations, arising mostly
from ��
A�2� �not shown�.

The above scenario is typical of Bloch oscillations in a
relatively wide band. When we adjust the tight-binding pa-
rameters so as to reduce the bandwidth, we find that the
wavepacket remains close to minimal in the course of the
Bloch oscillations and the associated spread oscillations are
very weak, of the order of the Brillouin-zone dispersion of
the metric �lower panel of Fig. 3�. One could try to enhance
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the spread oscillations by further tuning the model param-
eters so as to make the metric very large in some regions of
k space. However, that would require very small gaps and
under those circumstances the Bloch oscillations are strongly
damped by Zener tunneling.

So far we have considered a fixed waveform width 
k
=0.075�2�. Figure 4 displays the dependence on 
k of
each contributions to �
x�2 averaged over several Bloch os-
cillations. The term �G� is roughly constant and equal to the
Brillouin-zone average of the metric; it remains a small frac-
tion of �
x�2 over the entire range of 
k. For 
k�2� /a the
spread is dominated by the term �2� /a�
dk��kfk�2, while for

larger values of 
k the term ��
A�2� takes over. Its mono-
tonic increase is easily understood: the larger the range 
k,
the larger the spread of Ak over that range is likely to be.

C. Zener tunneling in a strong electric field

In Sec. IV B a weak electric field �E0�Eg
�0� /a� was cho-

sen, so that for the duration of the simulation the wavepacket
remained mostly in the lowest band. For sufficiently strong
fields, significant interband transitions are expected to occur
as the wavepacket reaches the zone center, where the gap is
smallest. In order to observe this phenomenon the saturation
field was increased from E0=0.055 to E0=0.09, while the
minimum gap between the first two bands was reduced from
Eg

�0�=1.14 to Eg
�0�=0.31 by setting U=−0.3. With this choice

of parameters, a very good stability of the propagation algo-
rithm is needed and we decreased the time step from
2�10−3 to 2�10−4. The Brillouin zone was sampled over
300 k points.

The Zener tunneling can be seen in the upper panel of Fig.
5 as a splitting of the wavepacket in real space. At the end of
every Bloch oscillation, t=n�B �n=1,2 , . . .�, the main wave-
packet in the lowest band spawns child packets which oscil-
late in the second band with the same period �B but a larger
amplitude �due to the larger width of the second band� and
gain more weight after each Bloch cycle. These child packets

also spawn grandchild packets at t= �2n+1��B /2, when
Zener tunneling from the second to the third band becomes
possible.

A more quantitative picture is obtained by monitoring the
distribution of the packet among the three bands. We define
the band occupancy Pn�t� as the total probability that the
wavepacket resides on band n �Ref. 10�,

Pn�t� = �
k

fk
2�t���unk

�0��vk�t���2. �30�

This quantity is plotted in Fig. 6 as a function of time.
Initially only the first band is occupied. After a Bloch period,
the wavepacket reaches the zone center, where the gap to the
second band is smallest, at which point significant Zener
tunneling occurs, giving rise to a partial occupation of the
second band. �Between t=0 and t=�B the wavepacket moved
in k space by less than the full Brillouin-zone width, from
�k�=−2� /3 to �k��−2�, because during most of that time
interval the electric-field strength was less than E0, as shown
in the lower panel of Fig. 5.� Subsequently there are also
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transitions to the third band, again with periodicity �B; be-
cause transitions from the second band to the first and third
bands happen at the zone center and at the zone boundary,
respectively, P2 undergoes changes twice as often as P1 and
P3.

V. CONCLUSIONS

In this work we have developed a numerical scheme for
simulating wavepacket dynamics in a periodic lattice poten-
tial with a linear potential �homogeneous electric field� su-
perimposed. By using the k-space representation of the posi-
tion operator, we were able to include the linear electric-field
term eE ·r in the Hamiltonian under periodic boundary con-
ditions, thus avoiding having to use large supercells with
hard-wall boundary conditions.10

In the present approach, the wavepacket is represented on
a uniform mesh of k points by a wave form fk sitting on top
of a “band” of states �vk� �Eq. �1��. The time evolution of the
wavepacket is then obtained from that of fk and �vk�. For E
�0 the states �vk� become nonadiabatic, field-polarized
Bloch states which span several energy bands of the field-
free crystal Hamiltonian H0 �a similar representation of
wavepackets in coupled energy bands was used in Ref. 22�;
thus interband effects, such as Zener tunneling, are fully ac-
counted for.

The method was tested on a one-dimensional tight-
binding model. Depending on the choice of tight-binding pa-
rameters and electric-field strength, we observed either long-
lived Bloch oscillations or short-lived Bloch oscillations
strongly damped by Zener tunneling. In the former regime,
we monitored the changes in the wavepacket spread accom-
panying the Bloch oscillations of the center of mass and
identified two distinct situations. �i� For wavepackets moving
in narrow bands, the spread changed very little over time. �ii�
For wavepackets moving in wide bands, the Bloch oscilla-
tions were accompanied by considerable oscillations of the
wavepacket spread. An analysis of the k-space expression for
the spread �Eq. �20�� reveals two distinct contributions which
can change over time: one associated with the Berry connec-
tion of the underlying Bloch states and another related to the
quantum metric. By tracking each of them separately, we
concluded that in the cases where significant spread oscilla-
tions took place, they originated mostly in the Berry connec-
tion term.
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APPENDIX: DISCRETIZED EXPRESSIONS IN k SPACE

Here we derive the discretized versions used in Sec. IV of
the dynamical equations of Sec. II and of the wavepacket
center and spread expressions of Sec. III.

1. Dynamical equations

The appropriate finite-difference representation of ��̃kvk��
on a uniform grid is13

��̃kvk�� =
1

2b
��ṽk+b� − �ṽk−b�� , �A1�

where b is the mesh spacing and

�ṽk+b� =
�vk+b� �

�vk��vk+b� �
. �A2�

We use Eq. �A1� to recast Eq. �8� as13

i�v̇k�� = Tk�vk�� , �A3�

in terms of the Hermitian operator,

Tk = Hk
0 + wk + wk

†, �A4�

where wk= �iE /2b��Pk
+− Pk

−� and Pk
�= �ṽk�b��vk��. Equation

�A3� is solved numerically at each grid point using10,13

�vk���t + 
t� �
1 − i�
t/2�Tk�t�
1 + i�
t/2�Tk�t�

�vk���t� . �A5�

Because of the similarity between Eqs. �10� and �A3�, the
phase factors Uk can be propagated in time using the same
algorithm. A finite-difference representation for the connec-
tion in Eq. �10� is needed. We use18

Ak � −
1

2b
��k

+ − �k
−� , �A6�

where we have defined the phases �k
�=−Im ln�vk �vk�b�.

When propagating Uk via Eq. �10�, care must be taken in
choosing consistently the branch cuts for the two phases in
Eq. �A6� to ensure that Ak remains a smooth function of k at
every time step.

2. Wavepacket center and spread

In order to obtain a finite-difference representation of Eq.
�15�, we make the replacement 
dk→�kb and then use Eq.
�A6�. A few manipulations yield

�x� � −
2�

a
�

k

1

2
�fk

2 + fk+b
2 ��k

+. �A7�

To find an expression for �
x�2 we start from Eq. �20�. The
first term on the RHS is easily discretized and �Gk� can be
evaluated from Eq. �21�. The remaining term is �Ak

2�− �Ak�2.
For �Ak�2= �x�2 we use Eq. �A7� and, from Eq. �A6�,

�Ak
2� �

�

b
�

k
	 fk

2 + fk+b
2

2
��k

+�2 − fk
2�k

+�k
−
 . �A8�

Besides reducing to the correct continuum expressions as
b→0, Eqs. �A7� and �A8� preserve exactly, for finite b, cer-
tain properties of those expressions. If we perform a change
in phases

�vk� → ei�k�vk� �A9�

with �k=�k−kR �R is a lattice vector and �k+2�/a=�k�, the
center of the packet �15� changes as
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�x� → �x� + R −
2�

a
� dk fk

2�k�k. �A10�

For a Wannier wavepacket fk is constant, so that the last term
vanishes, and �x� changes at most by a lattice vector.19 If
instead fk spans a narrow region K of the Brillouin zone, �x�
can then shift continuously under Eq. �A9�. Consider the
choice

�k = �− 	k k � K
0 otherwise,

� �A11�

which produces a rigid shift �x�→ �x�+	. Equation �A7�
obeys this transformation exactly, while the spread evaluated
using Eq. �A8� remains unchanged, as can be easily verified.
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